



# Celstran® PPS-CF30-01

Celanese Corporation - Polyphenylene Sulfide

Tuesday, November 5, 2019

## General Information

### Product Description

Celstran PPS-CF30-01 is a 30% long carbon fiber reinforced polyphenylene sulfide. This material imparts excellent impact and extremely high modulus properties that exceed that of short carbon fiber PPS.

### General

|                        |                                           |                  |                 |
|------------------------|-------------------------------------------|------------------|-----------------|
| Material Status        | • Commercial: Active                      |                  |                 |
| Availability           | • Asia Pacific                            | • Europe         | • North America |
| Filler / Reinforcement | • Long Carbon Fiber, 30% Filler by Weight |                  |                 |
| Features               | • Good Impact Resistance                  | • High Stiffness |                 |
| RoHS Compliance        | • Contact Manufacturer                    |                  |                 |

## ASTM & ISO Properties <sup>1</sup>

|                                       | Nominal Value | Unit                  | Test Method     |
|---------------------------------------|---------------|-----------------------|-----------------|
| <b>Physical</b>                       |               |                       |                 |
| Density                               | 1.45          | g/cm <sup>3</sup>     | ISO 1183        |
| <b>Mechanical</b>                     |               |                       |                 |
| Tensile Modulus                       | 4.62E+6       | psi                   | ISO 527-2/1A    |
| Tensile Stress (Break)                | 29400         | psi                   | ISO 527-2/1A/50 |
| Tensile Strain (Break)                | 0.72          | %                     | ISO 527-2/1A/5  |
| Flexural Modulus (73°F)               | 4.37E+6       | psi                   | ISO 178         |
| Flexural Stress (73°F)                | 49200         | psi                   | ISO 178         |
| <b>Impact</b>                         |               |                       |                 |
| Charpy Notched Impact Strength (73°F) | 6.9           | ft·lb/in <sup>2</sup> | ISO 179/1eA     |
| <b>Thermal</b>                        |               |                       |                 |
| CLTE - Flow                           | 2.1E-4        | in/in/°F              | ISO 11359-2     |
| CLTE - Transverse                     | 1.7E-3        | in/in/°F              | ISO 11359-2     |

## Processing Information

|                        | Nominal Value | Unit |  |
|------------------------|---------------|------|--|
| <b>Injection</b>       |               |      |  |
| Drying Temperature     | 230 to 266    | °F   |  |
| Drying Time            | 3.0 to 4.0    | hr   |  |
| Suggested Max Moisture | 0.020         | %    |  |
| Hopper Temperature     | 158 to 176    | °F   |  |
| Rear Temperature       | 545 to 563    | °F   |  |
| Middle Temperature     | 599 to 653    | °F   |  |
| Front Temperature      | 599 to 653    | °F   |  |
| Nozzle Temperature     | 599 to 653    | °F   |  |
| Processing (Melt) Temp | 599 to 635    | °F   |  |
| Mold Temperature       | 284 to 320    | °F   |  |

### Injection Notes

Feeding zone temperature: 20 to 50°C  
Zone4 temperature: 315 to 345°C

### Notes

<sup>1</sup> Typical properties: these are not to be construed as specifications.

UL and the UL logo are trademarks of UL LLC © 2019. All Rights Reserved.

The information presented here was acquired by UL from the producer of the product or material or original information provider. However, UL assumes no responsibility or liability for the accuracy of the information contained on this website and strongly encourages that upon final product or material selection information is validated with the manufacturer. This website provides links to other websites owned by third parties. The content of such third party sites is not within our control, and we cannot and will not take responsibility for the information or content.